

Reg. No. :						19	015

Question Paper Code: 41392

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018

Fourth/Sixth Semester Mechanical Engineering

ME 6402 - MANUFACTURING TECHNOLOGY - II

(Common to Mechanical Engineering(Sandwich)/Industrial Engineering/Industrial Engineering and Management/Mechanical and Automation Engineering)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. List the physical functions of a machine tool in machining.
- 2. Define the oblique cutting.
- 3. What are the various mechanisms that are used for automatic feeding in lathes?
- 4. Write the advantages of automats over conventional lathes.
- 5. Name any four work holding devices in shaper.
- 6. List the applications of gear hobbing.
- 7. What are the specifications of grinding wheel?
- 8. Why is the centre less grinders called specialized machine for Cylindrical parts?
- 9. Write the disadvantages of manual part programming.
- 10. What are the challenges in wafer machining?

PART – B

(5×13=65 Marks)

11.	a)	i) The	e following data from an orthogon	al cutting test is	available	(9)
		a)	Rake Angle	=	15°	
		b)	Chip Thickness Ratio	XF HHHDUCK	0.383	
		c)	Uncut Chip Thickness	Suffrage Investor M	0.5 mm	
		d)	Width of Cut, B	= MAXUTAK	3 mm	
		e)	Yield Stress of Material In Shea	r =	280 N/mm ²	
		f)	Average coefficient of friction or	the tool face =	0.7	
		De	etermine the normal and tangent	al forces on the	tool face.	
			aw the schematic diagram illustra ilt-up-Edge(BUE) formation in th	•		(4)
			(OR)			
	b)	Descri	be the following :			
		i) Me	chanisms and pattern (geometry)	of cutting tool w	rear.	(8)
		ii) Ess	sential properties of cutting fluids			(5)
12.	a)	With t	he help of suitable sketches descr	be the following	g:	Sara hea
		i) Taj	per turning by using taper turnin	g attachment.		(9)
		ii) Ta _l	per turning by combining longitud	linal feed and c	ross feed.	(4)
			(OR)			
	b)		erate the constructional details an nism in Capstan and turret lathe	8.	ciple of turret index	ing (9+4)
13.	a)		s in detail about the features of h	ydraulic drive o		
			(OR)			
	b)		short notes on gear shaping. List naping process.		and disadvantages	
14.	a)	Explain	n the working mechanism of the fo	ollowing grindin	g process briefly	
			indrical surface grinding.	min is now ing a	institute interes par	(7)
		ii) Cer	nterless grinding.			(6)
			(OR)			

 $(15)_{-}$

analysing the thermal aspects of machining?

b) Explain the surface involuntion of the following broaching process briefly (the **STREET TOOM** Is there any connection between the rimins of coordinate system and the